12 research outputs found

    Fabrication and Bonding of Refractive Index Matched Microfluidics for Precise Measurements of Cell Mass

    No full text
    The optical properties of polymer materials used for microfluidic device fabrication can impact device performance when used for optical measurements. In particular, conventional polymer materials used for microfluidic devices have a large difference in refractive index relative to aqueous media generally used for biomedical applications. This can create artifacts when used for microscopy-based assays. Fluorination can reduce polymer refractive index, but at the cost of reduced adhesion, creating issues with device bonding. Here, we present a novel fabrication technique for bonding microfluidic devices made of NOA1348, which is a fluorinated, UV-curable polymer with a refractive index similar to that of water, to a glass substrate. This technique is compatible with soft lithography techniques, making this approach readily integrated into existing microfabrication workflows. We also demonstrate that this material is compatible with quantitative phase imaging, which we used to validate the refractive index of the material post-fabrication. Finally, we demonstrate the use of this material with a novel image processing approach to precisely quantify the mass of cells in the microchannel without the use of cell segmentation or tracking. The novel image processing approach combined with this low refractive index material eliminates an important source of error, allowing for high-precision measurements of cell mass with a coefficient of variance of 1%

    Fabrication and Bonding of Refractive Index Matched Microfluidics for Precise Measurements of Cell Mass

    No full text
    The optical properties of polymer materials used for microfluidic device fabrication can impact device performance when used for optical measurements. In particular, conventional polymer materials used for microfluidic devices have a large difference in refractive index relative to aqueous media generally used for biomedical applications. This can create artifacts when used for microscopy-based assays. Fluorination can reduce polymer refractive index, but at the cost of reduced adhesion, creating issues with device bonding. Here, we present a novel fabrication technique for bonding microfluidic devices made of NOA1348, which is a fluorinated, UV-curable polymer with a refractive index similar to that of water, to a glass substrate. This technique is compatible with soft lithography techniques, making this approach readily integrated into existing microfabrication workflows. We also demonstrate that this material is compatible with quantitative phase imaging, which we used to validate the refractive index of the material post-fabrication. Finally, we demonstrate the use of this material with a novel image processing approach to precisely quantify the mass of cells in the microchannel without the use of cell segmentation or tracking. The novel image processing approach combined with this low refractive index material eliminates an important source of error, allowing for high-precision measurements of cell mass with a coefficient of variance of 1%

    Factors influencing success of clinical genome sequencing across a broad spectrum of disorders

    No full text
    To assess factors influencing the success of whole-genome sequencing for mainstream clinical diagnosis, we sequenced 217 individuals from 156 independent cases or families across a broad spectrum of disorders in whom previous screening had identified no pathogenic variants. We quantified the number of candidate variants identified using different strategies for variant calling, filtering, annotation and prioritization. We found that jointly calling variants across samples, filtering against both local and external databases, deploying multiple annotation tools and using familial transmission above biological plausibility contributed to accuracy. Overall, we identified disease-causing variants in 21% of cases, with the proportion increasing to 34% (23/68) for mendelian disorders and 57% (8/14) in family trios. We also discovered 32 potentially clinically actionable variants in 18 genes unrelated to the referral disorder, although only 4 were ultimately considered reportable. Our results demonstrate the value of genome sequencing for routine clinical diagnosis but also highlight many outstanding challenges
    corecore